《解二元一次方程组》教案

时间:2024-03-26 16:57:17 教案 我要投稿
  • 相关推荐

《解二元一次方程组》教案

  作为一位兢兢业业的人民教师,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么写教案需要注意哪些问题呢?下面是小编为大家收集的《解二元一次方程组》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《解二元一次方程组》教案

《解二元一次方程组》教案1

  教学目的

  1.使学生了解二元一次方程,二元一次方程组的概念。

  2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

  3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

  重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

  难点;了解二元一次方程组的'解的含义。

  导学提纲:

  1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

  2.阅读教材问题1思考下列问题

  ⑴.能否用我们已经学过的知识来解决这个问题?

  用算术法解答

  用一元一次方程解答

  解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

  ⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

  ⑶.对于方程x十y=73x+y=17请思考下列问题

  ①它们是一元一次方程吗?

  ②这两个方程有没有共同特点/若有,有河共同特点?

  ③类比一元一次方程的概念,总结二元一次方程的概念

  3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

  注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

  4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

  注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

  (2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

  5.思考讨论在方程组①②③④

  ⑤⑥中,属于二元一次方程组的有

  达标检测:

  1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

  (1)甲数的比乙数的2倍少7:_____________________________;

  (2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

  (3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

  2.下列方程是二元一次方程的是()

  A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

  3.下列不是二元一次方程组的是()

  x+3y=5m+3m=152x+3x=0m+n=5

  A、B、C、D、

  2x-3x=3+=3-5y=02m+n=6

  x=2

  4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

  y=-3

  5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

《解二元一次方程组》教案2

  教学目标:

  1.会用加减消元法解二元一次方程组.

  2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

  3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的'“转化”的思想方法.

  教学重点:

  加减消元法的理解与掌握

  教学难点:

  加减消元法的灵活运用

  教学方法:

  引导探索法,学生讨论交流

  教学过程:

  一、情境创设

  买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

  设苹果汁、橙汁单价为x元,y元.

  我们可以列出方程3x+2y=23

  5x+2y=33

  问:如何解这个方程组?

  二、探索活动

  活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

  2、这些方法与代入消元法有何异同?

  3、这个方程组有何特点?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解这个方程得:y=4

  把y=4代入③式

  则

  所以原方程组的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解这个方程得:x=5

  把x=5代入①式,

  3×5+2y=23

  解这个方程得y=4

  所以原方程组的解是x=5

  y=4

  把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

  三、例题教学:

  例1.解方程组x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  将代入①,得

  解这个方程得:

  所以原方程组的解是

  巩固练习(一):练一练1.(1)

  例2.解方程组5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

  ②×3,得

  4x-6y=-10④

  ③—④,得:

  11x=22

  解这个方程得x=2

  将x=2代入①,得

  5×2-2y=4

  解这个方程得:y=3

  所以原方程组的解是x=2

  y=3

  巩固练习(二):练一练1.(2)(3)(4)2.

  四、思维拓展

  解方程组:

  五、小结:

  1、掌握加减消元法解二元一次方程组

  2、灵活选用代入消元法和加减消元法解二元一次方程组

  六、作业

  习题10.31.(3)(4)2.

《解二元一次方程组》教案3

  教学目标:

  1. 能熟练地用代入消元法解简单的二元一次方程组

  2. 从解方程的过程中体会转化的思想方法

  教学重点:

  用代入消元法解二元一次方程组

  教学难点:

  用含有一个未知数的代数式表示另一个未知数

  教学过程:

一、情境创设

  根据篮球比赛规则;赢一场得2分,平一场得1分,在某次中学篮球联赛中,某球队赛了12场,赢了x场,输了y场,共各20分.

  可以得出方程组: x+y=12

  2x+y=20

  (学生思考,列出方程)

  二、新课讲授

  如何解上面的二元一次方程组呢? x+y=12 ①

  2x+y=20 ②

  (学生主动探索,尝试,体会消元的方法)

  解:由①得:y=12-x ③

  将③ 代入②得: 2x+12x-x=20

  解这个二元一次方程,得

  x=8

  将x=8代入③,得y=4

  所以原方程组的解是 x=8

  y=4

  注:①二元一次方程组的解是一对数值,而不是一个单纯的x值或y值.

  ②算出结果后要做心算检验,以养成习惯

  问题:(引导思维拓展)

  ①你是如何解方程组的?

  ②每一步的'依据是什么?

  ③还有其它的方法吗?(能否通过消去x解方程?)

  代入消元法:将方程组的一个方程中的某个未知数据用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程转化为解一元一次方程,这种解方程组的方法,称为代入消元法,简称代入法.

  即:由①得:x=12-y③,将③代入②得

  即使用x来表示y,方法也不是唯一的,可以由①得y=12-x,也可以由②得y=20-2x

  三、例题教学:

  解方程组 x+3y=0

  3x+2y=92

  (板书示范,学生思考回答)

  步骤

  1.用一个未知数表示另一个未知数;

  2.将表示后的未知数代入方程;

  3.解此方程

  4.求方程组的一对解.

  四、学生练习

  P110 1、2、3(学生板演)

  五、拓展延伸

  1.解方程组 3x=1-2y

  3x+4y=-7(整体代入法)

  2.已知 x+y=k

  2x+3y=k

  六、课时小结:

  1. 用代入法解二元一次方程组的步骤?

  2. 任意一个二元一次方程都能用代入消元法解吗?举例说明.

  七、作业

  P112 1、(1)(4) 2、3、

《解二元一次方程组》教案4

  一、内容和内容解析

  1.内容

  代入消元法解二元一次方程组

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

  在平面直角坐标系中求两直线交点坐标等.

  解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

  本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.

  二、目标和目标解析

  1.教学目标

  (1)会用代入消元法解一些简单的二元一次方程组

  (2)理解解二元一次方程组的思路是消元,体会化归思想

  2.教学目标解析

  (1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

  (2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的'关系,进一步体会消元思想和化归思想

  三、教学问题诊断分析

  1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

  2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

  本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

  四、教学过程设计

  1.创设情境,提出问题

  问题1

  篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

  师生活动:学生回答:能.设胜x场,负y场.根据题意,得

  我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

  这节课我们就来探究如何解二元一次方程组.

  设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.

  问题2 对比方程和方程组,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

  师生活动:根据上面分析,你们会解这个方程组了吗?

  学生回答:会.

  由①,得y=10-x ③

  把③代入②,得2x+(10-x)=16 x=6

  设计意图:共同探究,体会消元的过程.

  问题3 教师追问:你能把③代入①吗?试一试?

  师生活动:学生回答:不能,通过尝试,x抵消了.

  设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.

  教师追问:你能求y的值吗?

  师生活动:学生回答:把x=6代入③得y=4

  教师追问:还能代入别的方程吗?

  学生回答:能,但是没有代入③简便

  教师追问:你能写出这个方程组的解,并给出问题的答案吗?

  学生回答:x=6,y=4,这个队胜6场,负4场

  设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

  师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?

  学生回答:代入这一步

  教师总结:这种方法叫代入消元法。

  教师追问:你能先消x吗?

  学生纷纷动手完成。

  设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.

  2. 应用新知,拓展思维

  例 用代入法解二元一次方程组

  师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

  设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.

  3.加深认识,巩固提高

  练习 用代入法解二元一次方程组

  设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.

  4.归纳总结,知识升华

  师生活动,共同回顾本节课的学习过程,并回答以下问题

  1. 代入消元法解二元一次方程组有哪些步骤?

  2. 解二元一次方程组的基本思路是什么?

  3.在探究解法的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

  5. 布置作业

  教科书第93页第2题

  五、目标检测设计

  用代入法解下列二元一次方程组

  设计意图:考查学生对代入法解二元一次方程组的掌握情况.

《解二元一次方程组》教案5

  学习目标 :会运用代入消元法解二元一次方程组.

  学习重难点:

  1、会用代入法解二元一次方程组。

  2、灵活运用代入法的技巧.

  学习过程:

  一、基本概念

  1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

  2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

  3、代入消元法的步骤:

  二、自学、合作、探究

  1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

  2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

  3、若 的解,则a=______,b=_______。

  4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

  5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。

  6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。

  7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。

  8、当k=______时,方程组 的解中x与y的'值相等。

  9、用代入法解下列方程组:

  ⑴ ⑵ ⑶

  二、训练

  1、方程组 的解是( )

  A. B. C. D.

  2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

  3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

  4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )

  A. B.2,1 C.-2,1 D.-1,0

  5、用代入法解下列方程组

  ⑴ ⑵

  6、如果(5a-7b+3)2+ =0,求a与b的值。

  7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m

  8、若方程组 与 有公共的解,求a,b.

《解二元一次方程组》教案6

  一、素质教育目标

  (一)知识教学点

  1.理解画两个角的差,一个角的几倍、几分之一的方法.

  2.掌握用量角器画两个角的和差,一个角的几倍、几分之一的画法.用三角板画一些特殊角的画法.

  (二)能力训练点

  通过画角的和、差、倍、分,三角板和量角器的使用,培养学生动手能力和操作技巧.

  (三)德育渗透点

  通过利用三角板画特殊角的方法,说明几何知识常用来解决实际问题,进行几何学在生产、生活中起着重要作用的教育,鼓励他们努力学习。

  (四)美育渗透点

  通过学生动手操作,使学生体会到简单几何图形组合的多样性,领会几何图形美.

  二、学法引导

  1.教师教法:尝试指导,以学生操作为主.

  2.学生学法:在教师的指导下,积极动手参与,认真思考领会归纳.

  三、重点、难点、疑点及解决办法

  (一)重点

  用量角器画角的和、差、倍、分及用三角板画特殊角.

  (二)难点

  准确使用量角器画一个角的几分之一.

  (三)疑点

  量角器的正确使用.

  (四)解决办法

  通过正确指导,规范操作,使学生掌握画法要领,并以练习加以巩固,从而解决重难点及疑点.

  四、课时安排

  1课时

  五、教具学具准备

  一副三角板、量角器.

  六、师生互动活动设计

  1.通过教师设,学生动手及思考创设出情境,引出课题.

  2.通过学生尝试解决、教师把握几何语言美的方法,放手由学生自己解决有关角的画法.

  3.通过提问的形式完成小结.

  七、教学步骤

  (一)明确目标

  使学生会用量角器画角及角的和、差、倍、分,培养学生动手能力和操作能力.

  (二)整体感知

  通过教师指导,学生动手操作完成对画图能力和操作能力的掌握.

  图1

  (三)教学过程

  创设情境,引出课题

  教师在黑板上画出(如图1).

  师:现有工具量角器和三角板,谁到黑板上画一个角等于呢?请同学们观察他的操作,老师要找同学说明他的画法.

  【教法说明】有上节课的基础,学生会先用量角器测量的度数,再画一个度数等于这个度数的角,学生也会叙述其画法.

  提出问题:若老师想画的余角、补角呢?

  学生会想到画、减去的度数后的角,即为的余角、补角.

  师:是否还有别的方法?

  这时学生一定会积极思考,立刻回答还有困难.教师抓住时机点明课题:同学们不用着急,今天我们就研究角的画法,学习用三角板、量角器画角的和、差、倍、分以及一些特殊角.老师提出的问题你们会解决的.另外,角的画法在我们日常生活中应用广泛,希望同学们认真学习.(板书课题……)

  [板书]1.7角的画法

  探究新知

  1.画一个角等于已知角

  找学生再次叙述方法:用量角器量出已知角的度数,再画一个等于这个度数的角.

  操作:略.

  注意:量角器使用三要素:对中、重合、读数.

  2.用三角板画特殊角

  师:请同学们准备好练习本和一副三角板,再找同学说出一副三角板中各角度数.

  学生活动:用三角板在练习本上画出直角、角、角、角.

  提出问题:你能利用一副三角板画出、的角吗?

  学生活动:讨论画、的角的方法,在练习本上画出图形,同桌可相互交换检查,找学生到黑板上画.

  【教法说明】有前一节角的和、差的理解和、 、角的画法,学生对画、的角不会有困难.因此,教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,但对于画法学生不会叙述得太严密,教师要把关,培养学生几何语言的严密性.

  教师根据前面学生所画图形,引导学生写出画法.(以角的画法为例,与例题相符.)

  图1

  画法如图l,①利用三角板,画

  ②在的外部,再画就是要画的的角.

  反馈练习:用三角板画、的角.

  【教法说明】由学生独立完成以上三个角的画图.教师不给任何提示,只要求写出画角的方法,注意观察画法,是否写出了“在角的内部画的角”.区别例题中两角和的画法.

  提出问题:由一副三角板可以画出多少度的角?

  学生讨论得出可以画出的角.

  这些角都是的倍数,用三角板也只限画这样的角.由此得出:由量角器画任意角的'和、差、倍、分角.

  3.画任意两个角的和差及一个角的几倍、几分之一.

  问题:如图1,已知、(),如何画出与的和?与的差?

  图1

  学生活动:讨论画,的方法,并在练习本上根据自己的想法画图.

  根据学生的讨论回答,老师归纳以下方法:

  (1)用量角器量出、的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角.

  (2)用量角器把移到上,如果本方法.

  图1

  教师示范,写出两种画法:

  画法一:(1)用量角器量得,.

  (2)画,就是要画的角如图1.

  图2

  画法二:(1)用量角器画.

  (2)以点为顶点,射为一边,在的外部画.

  就是要画的角如图2.

  学生活动:叙述用两种方法画的画法.出示例1由学生完成,要求用两种方法,找同学板演.

  例1?已知,画出它们的余角.

  画法一:(1)量得.

  图1图2

  (2)画,就是所要画的角,见图1.

  画法二:利用三角板,以的顶点为顶点,一边为边,画直角,使的另一边在直角的内部,如图2,就是所要画的角.

  【教法说明】第二种画法学生可能叙述或书写不太完整,教师要注意其严密性.

  反馈练习

  1.已知,画出它的补角.

  2.已知,画它们的角平分线.

  3.画的角,并把它分成三等份.

  【教法说明】本练习只要求图形正确即可,不要求写出画法.

  (四)总结、扩展

  以提问的形式归纳出以下知识脉络:

  八、布置作业

  课本第46页习题1.5A组第2、3题.

《解二元一次方程组》教案7

  教学建议

  一、知识结构

  二、重点难点分析

  本节教学的重点是同位角、内错角、同旁内角的概念、难点为在较复杂的图形中辨认同位角、内错角、同旁内角、掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础、

  (1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对、

  (2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截、也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线、

  (3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角、要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系、

  (4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系、

  三、教法建议

  1、上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示、

  2、在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚、

  3、这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础、

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1、理解同位角、内错角、同旁内角的概念、

  2、结合图形识别同位角、内错角、同旁内角、

  (二)能力训练点

  1、通过变式图形的识图训练,培养学生的识图能力、

  2、通过例题口答“为什么”,培养学生的推理能力、

  (三)德育渗透点

  从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点、

  (四)美育渗透点

  通过“三线八角”基本图形,使学生认识几何图形的位置美、

  二、学法引导

  1、教师教法:尝试指导,讨论评价、变式练习、回授、

  2、学生学法:主动思考,相互研讨,自我归纳、

  三、重点、难点、疑点及解决办法

  (一)生点

  同位角、内错角、同旁内角的概念、

  (二)难点

  在较复杂的图形中辨认同位角、内错角、同旁内角、

  (三)疑点

  正确理解新概念、

  (四)解决办法

  引导学生讨论归纳三类角的特征,并以练习加以巩固、

  四、课时安排

  1课时

  一、教具学具准备

  投影仪、三角板、自制胶片、

  六、师生互动活动设计

  1、通过一组练习创设情境,复习基础知识,引入新课、

  2、通过学生阅读书本,教师设问引导,练习巩固讲授新课、

  3、通过师生互答完成课堂小结、

  七、教学步骤

  (一)明确目标

  使学生掌握“三线八角”,并能在图形中进行辨识、

  (二)整体感知

  以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知、

  (三)教学过程

  创设情境,复习导入

  回答下列问题:

  1、如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?

  2、如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?

  3、如图,三条直线 AB 、CD 、EF 交于一点 O ,则图中有几对对顶角,有几对邻补角?

  4、如图,三条直线 AB 、CD 、EF 两两相交,则图中有几对对项角,有几对邻补角?

  5、三条直线相交除上述两种情况外,还有其他相交的情形吗?

  学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线 CD ,使 CD 与EF相交于某一点(如图),直线 AB 、CD 都与EF相交或者说两条直线 AB 、CD 被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系、

  【板书】 2.3同位角、内错角、同旁内角

  【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的`产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况、认识事物间是发展变化的辩证关系、

  尝试指导,学习新知

  1、学生自己尝试学习,阅读课本第67页例题前的内容、

  2、设计以下问题,帮助学生正确理解概念、

  (1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?

  (2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?

  (3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?

  (4)同位角和同分内角在位置上有什么相同点和不同点?

  内错角和同旁内角在位置上有什么相同点和不同点?

  (5)这三类角的共同特征是什么?

  3、对上述问题以小组为单位展开讨论,然后学生间互相评议、

  4、教师对学生讨论过程中所发表的意见进行评判,归纳总结、

  在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征( F 、Z 、U )判断问题就迎刃而解、

  【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性、学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力、

  投影显示(投影片2)

  例题?如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?

  (2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?

  [教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练、

  变式训练,巩固新知

  投影显示(投影片3)

  【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是 c ,即 a b c 所截,如 c a 被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提、

  投影显示(投影片4)

  【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角、这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位、这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形、如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:

  投影显示(投影片5)

  【教法说明】学生在较复杂的图形中,对找这一类的同位角,找这一类的内错角,找这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对 C 、D 两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。

  投影显示(投影片6)

  【教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度、学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把 AB 、BD 、EF 看成是截线找三类角,这样既不遗漏又不重复、

  (四)总结、扩展

  1、本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角、

  2、相交直线

  3、教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?”

  【教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结、可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。

  八、布置作业

  课本第72页B组第4题、

  【教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度

  作业答案

  4、答:(1)设 E BC 延长线上的一点,∠ A 与∠ ACD 、∠ ACE 是内错角,它们分别是由直线 AB 、CD 被直线 AC 截成的和直线 AB 、BE 被直线 AC 截成的。

  (2)∠ B 与∠ DCE 、∠ ACE 是同位有,它们分别是由直线 AB 、CD 被直线 BE 截成的和直线 AB 、AC 被直线 BE 截成的。

《解二元一次方程组》教案8

  教学建议

  一、重点、难点分析

  本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

  解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

  二、知识结构

  三、教法建议

  1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

  这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

  2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

  3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

  一、素质教育目标

  (一)知识教学点

  1.掌握用代入法解二元一次方程组的步骤.

  2.熟练运用代入法解简单的二元一次方程组.

  (二)能力训练点

  1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

  2.训练学生的运算技巧,养成检验的习惯.

  (三)德育渗透点

  消元,化未知为已知的数学思想.

  (四)美育渗透点

  通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

  二、学法引导

  1.教学方法:引导发现法、练习法,尝试指导法.

  2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

  三、重点、难点、疑点及解决办法

  (-)重点

  使学生会用代入法解二元一次方程组.

  (二)难点

  灵活运用代入法的技巧.

  (三)疑点

  如何“消元”,把“二元”转化为“一元”.

  (四)解决办法

  一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

  2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

  3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

  七、教学步骤

  (-)明确目标

  本节课我们将学习用代入法求二元一次方程组的解.

  (二)整体感知

  从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

  (三)教学步骤

  1.创设情境,复习导入

  (1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

  (2)选择题:

  二元一次方程组 的解是

  A. B. C. D.

  第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

  通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

  这样导入,可以激发学生的求知欲.

  2.探索新知,讲授新课

  香蕉的.售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

  学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

  设买了香蕉 千克,那么苹果买了 千克,根据题意,得

  设买了香蕉 千克,买了苹果 千克,得

  上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

  解:由①得: ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

  上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

  学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

  例1 解方程组

  (1)观察上面的方程组,应该如何消元?(把①代入②)

  (2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

  (3)求出 后代入哪个方程中求 比较简单?(①)

  学生活动:依次回答问题后,教师板书

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何检验得到的结果是否正确?

  学生活动:口答检验.

  教师:要把所得结果分别代入原方程组的每一个方程中.

  给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

  例2 解方程组

  要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

  学生活动:尝试完成例2.

  教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

  解:由②,得 ③

  把③代入①,得

  ∴

  ∴

  把 代入③,得

  ∴

  ∴

  检验后,师生共同讨论:

  (1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

  (2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

  学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

  教师板书:

  (1)变形( )

  (2)代入消元( )

  (3)解一元一次方程得( )

  (4)把 代入 求解

  练习:P13 1.(1)(2);P14 2.(1)(2).

  3.变式训练,培养能力

  ①由 可以得到用 表示 .

  ②在 中,当 时, ;当 时, ,则 ; .

  ③选择:若 是方程组 的解,则( )

  A. B. C. D.

  (四)总结、扩展

  1.解二元一次方程组的思想:

  2.用代入法解二元一次方程组的步骤.

  3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

  通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

  八、布置作业

  (一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

  (二)选做题:P15 B组1.

《解二元一次方程组》教案9

  教学目标

  1.使学生会用代入消元法解二元一次方程组;

  2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

  3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.

  教学重点和难点

  重点:用代入法解二元一次方程组.

  难点:代入消元法的基本思想.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

  2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

  3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组

  对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.

  问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

  (4)能否由方程组中的方程②求解该问题呢?

  (5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.

  由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

  将x=30代入方程③,得y=20.

  即鸡有30只,兔有20只.

  本节课,我们来学习二元一次方程组的解法.

  二、讲授新课例1解方程组

  分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

  (本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?

  3.只求出一个未知数的值,方程组解完了吗?

  4.把已求出的未知数的值,代入哪个方程来求另一个未知数的'值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2解方程组

  分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37.

  (问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.

  (本题可由一名学生口述,教师板书完成)

  三、课堂练习(投影)用代入法解下列方程组:

  四、师生共同小结

  在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

  五、作业

  用代入法解下列方程组:

  5.x+3y=3x+2y=7.

《解二元一次方程组》教案10

  教学目标:

  1、会用代入法解二元一次方程组

  2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。

  此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。

  引导性材料:

  本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的'速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60

  Y=2X 观察

  2(X+2X)=60与 2(X+Y)=60 ①

  Y=2X ② 有没有内在联系?有什么内在联系?

  (通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)

  知识产生和发展过程的教学设计

  问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的问题(解一元一次方程)。

  解方程组 2(X+Y)=60 ①

  Y=2X ②

  解:把②代入①得:

  2(X+2X)=60,

  6X=60,

  X=10

  把X=10代入②,得

  Y=20

  因此: X=10

  Y=20

  问题2:你认为解方程组 2(X+Y)=60 ①

  Y=2X ② 的关键是什么?那么解方程组

  X=2Y+1

  2X—3Y=4 的关键是什么?求出这个方程组的解。

  上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。

  问题3:对于方程组 2X+5Y=-21 ①

  X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?

  (说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)

  例题解析

  例:用代入法将下列解二元一次方程组转化为解一元一次方程:

  (1)X=1-Y ①

  3X+2Y=5 ②

  将①代入②(消去X)得:

  3(1-Y)+2Y=5

  (2)5X+2Y-25.2=0 ①

  3X-5=Y ②

  将②代入①(消去Y)得:

  5X+2(3X-5)-25.2=0

  (3)2X+Y=5 ①

  3X+4Y=2 ②

  由①得Y=5-2X,将Y=5-2X代入②消去Y得:

  3X+4(5-2X)=2

  (4)2S-T=3 ①

  3S+2T=8 ②

  由①得T=2S-3,将T=2S-3代入②消去T得:

  3S+2(2S-3)=8

  课内练习:

  解下列方程组。

  (1)2X+5Y=-21 (2)3X-Y=2

  X+3Y=8 3X=11-2Y

  小结:

  1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。

  2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。

  3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。

  课后作业:

  教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。

【《解二元一次方程组》教案】相关文章:

解二元一次方程组教学反思03-28

解二元一次方程组教学反思15篇03-29

《二元一次方程组》说课稿12-29

二元一次方程组教学反思03-10

二元一次方程组的解法说课稿07-15

《二元一次方程组》的教学反思04-28

二元一次方程组及其应用教学总结01-16

二元一次方程组及其应用教学总结范文03-08

二元一次方程教案02-21

二元一次方程教案07-27